AI, ML, and DL

Learning map

通常要用哪一個scenario是無法決定的,就沒資料就沒辦法做supervised learning

Regression

Applications

  • Stock Market forecast

  • Self-driving car

  • Recommendation

Supervised learning

  • Regression: The output of the target function f is "scaler," e.g., PM2.5 prediction.

  • Classification: binary (spam mail or not) or multi-class (classifying news categories)

    • Linear model

    • Non-Linear model

      • Deep learning

      • SVM decision tree, K-NN

Semi-supervised learning

Very few labelled data with unlabeled data

Transfer learning

從別的有label的資料學到經驗,比方說,能夠判斷酒類的味覺和嗅覺特徵,那能不能拿來判斷美食的嗅覺與味覺特徵。

Unsupervised learning

e.g., Generating new paintings from a painting set

Structured learning

e.g., Machine translation, speech recognition, ...輸出的是一個有結構的東西。

Reinforcement learning

e.g., Alpha go 沒有告訴機器正確的答案是什麼,機器只能評估知道自己做的好不好,比方說電話交談,或者是整盤棋最後輸掉了。

Last updated