學習資源
Last updated
Was this helpful?
Last updated
Was this helpful?
: for NTU Journalism
: for NTU ECON students
: Workshop for news media
for learning crawler only, assuming audiences have sufficient R basic knowledge
: for most of students without sufficient statistical background
to learn R including Machine learning
Jared P. Lander著、鍾振蔚譯(2018)精通大數據!R 語言資料分析與應用 第二版
J.D Long, Paul Teetor著、張靜雯譯(2019)R 錦囊妙計(第二版; R Cookbook 2nd Edition)
(Online bookdown)
(Online)
(Online)by Julia Silge and David Robinson <- Highly-Recommended, especially for tidyverse programming style of R and exploratory analysis.
(Online)
Introducing classical ML methods one by one by corresponding R packages. Not mlr. Introduced by author-owned datasets, better than .
: Using built-in dataset to introduce ML for R
(Online but incomplete)Julia Silge's New book. Focusing more on text-based ML and pulling-in DL into.
Wohoho....with mlr.
(Incomplete)
A big collection for R e-books (including above all)
時序預測:
Introduction book by 長庚’s epidemiologist
Tutorial 2 crawling thegurdian.com
Repository cloned to local folder.
I strongly recommended new R programming language learners, especially in my class, should learn basic concept from a great online interactive learning platform DataCamp, then study my materials to learn problem-solving skills. Besides, learners can use my materials to learn Taiwan domestic cases and web crawlers.
: topic modeling, regressions, classifications, …
Course text mining for social scientists ← Very good tutorial of using openNLP and tm package for English text mining.
本門課建議R的初學者一邊看的課程單元,一邊看本網站所提供的教材。Datacamp會帶給你一些R的基礎與法的硬知識,也就是每個操作、功能要怎麼使用、是如何被定義的;而本網站的教材則會帶你進入實用。過去的學習者往往表示,看過Datacamp後再看本網站的課程會有豁然開朗的感覺。
但是Datacamp僅允許免費看每個單元的第一章節,如果你們是本學期的修課生的話,老師會幫這門課程申請半年的免費使用,助教會蒐集你們註冊的E-mail;如果你們是一個研究社群的話,建議可以請老師用他的名義申請開個課,就可以免費使用半年,通常兩三天便會核准,。
: Vectors, Materics, Factors, Data frames, Lists
: Conditionals and Control Flow, Loops, Functions, The apply family (Optional), Utilities (Optional)
: glimpse(), select(), filter(), arrange(), mutate() count(), transmnute() group_by(), summarize():
: You can also learn by case with the 2nd unit of
: Joining multiple dataset with shared key by left_joing()
, right_join()
, full_join()
, inner_join()
: Reshaping data table form by tidyr::gather()
, tidyr::spread()
, tidyr::separate()
, Dealing with missing values
: Detecting, matching, splitting, replacing Regular expression\